网上有关“趣味数学小知识内容”话题很是火热,小编也是针对趣味数学小知识内容寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
1. 一年级小学生趣味数学小知识(一年级趣味数学题及答案)
一年级小学生趣味数学小知识(一年级趣味数学题及答案) 1.一年级趣味数学题及答案
小学数学趣味题
1.小华的爸爸1分钟可以剪好5只自己的指甲。他在5分钟内可以剪好几只自己的指甲? 2.小华带50元钱去商店买一个价值38元的小汽车,但售货员只找给他2元钱,这是为什么? 3.小军说:“我昨天去钓鱼,钓了一条无尾鱼,两条无头的鱼,三条半截的鱼。你猜我一共钓了几条鱼?”同学们猜猜小军一共钓了几条鱼?
4.6匹马拉着一架大车跑了6里,每匹马跑了多少里?6匹马一共跑了多少里?
5.一只绑在树干上的小狗,贪吃地上的一根骨头,但绳子不够长,差了5厘米。你能教小狗用什么办法抓着骨头呢?
6.王某从甲地去乙地,1分钟后,李某从乙地去甲地。当王某和李某在途中相遇时,哪一位离甲地较远一些?
7.时钟刚敲了13下,你现在应该怎么做?
8.在广阔的草地上,有一头牛在吃草。这头牛一年才吃了草地上一半的草。问,它要把草地上的草全部吃光,需要几年?
9.妈妈有7块糖,想平均分给三个孩子,但又不愿把余下的糖切开,妈妈怎么办好呢? 10.公园的路旁有一排树,每棵树之间相隔3米,请问第一棵树和第六棵树之间相隔多少米?
11.把8按下面方法分成两半,每半各是多少?算术法平均分是____,从中间横着分是____,从中间竖着分是____.
12.一个房子4个角,一个角有一只猫,每只猫前面有3只猫,请问房里共有几只猫? 13.一个房子4个角,一个角有一只猫,每只猫前面有4只猫,请问房里共有几只猫? 14.小军、小红、小平3个人下棋,总共下了3盘。问他们各下了几盘棋?(每盘棋是两个人下的)
15.小明和小华每人有一包糖,但是不知道每包里有几块。只知道小明给了小华8块后,小华又给了小明14块,这时两人包里的糖的块数正好同样多。同学们,你说原来谁的糖多?多几块?
答案:
1.20只,包括手指甲和脚指甲
2.因为他付给售货员40元,所以只找给他2元; 3.0条,因为他钓的鱼是不存在的; 4.6里,36里;
5.只要教小狗转过身子用后脚抓骨头,就行了。
6.他们相遇时,是在同一地方,所以两人离甲地同样远; 7.应该修理时钟;
8.它永远不会把草吃光,因为草会不断生长; 9.妈妈先吃一块,再分给每个孩子两块; 10.15米; 11.4,0,3. 12.4只; 13.5只;
14.2盘;
15.原来小华糖多;14-8=6块,因为多给了6块两人糖的块数正好同样多,所以原来小华比小明多12块
2.小学一年级趣味数学故事
1、蜗牛何时爬上井?一只蜗牛不小心掉进了一口枯井里。
它趴在井底哭了起来。一只癞蛤蟆爬过来,瓮声瓮气的对蜗牛说:“别哭了,小兄弟!哭也没用,这井壁太高了,掉到这里就只能在这生活了。
我已经在这里过了多年了,很久没有看到过太阳,就更别提想吃天鹅肉了!”蜗牛望着又老又丑的癞蛤蟆,心里想:“井外的世界多美呀,我决不能像它那样生活在又黑又冷的井底里!”蜗牛对癞蛤蟆说: “癞大叔,我不能生活在这里,我一定要爬上去!请问这口井有多深?”“哈哈哈……,真是笑话!这井有10米深,你小小的年纪,又背负着这么重的壳,怎么能爬上去呢?”“我不怕苦、不怕累,每天爬一段,总能爬出去!”第二天,蜗牛吃得饱饱的,喝足了水,就开始顺着井壁往上爬了。它不停的爬呀,到了傍晚终于爬了5米。
蜗牛特别高兴,心想:“照这样的速度,明天傍晚我就能爬上去。”想着想着,它不知不觉地睡着了。
早上,蜗牛被一阵呼噜声吵醒了。一看原来是癞大叔还在睡觉。
它心里一惊:“我怎么离井底这么近?”原来,蜗牛睡着以后从井壁上滑下来4米。蜗牛叹了一口气,咬紧牙又开始往上爬。
到了傍晚又往上爬了5米,可是晚上蜗牛又滑下4米。爬呀爬,最后坚强地蜗牛终于爬上了井台。
你能猜出来,蜗牛需要用几天时间就能爬上井台吗? 2、从前有个大地主叫古依木,雇了一个叫扎克的长工,答应每年给一头牛的工钱。到了年底,古依木对扎克说,你的工钱存在我这儿,将来可以办大事。
老实的扎克同意了。一晃19年过去了,扎克年老力衰了,大地主古依木就想把他辞退。
一天,古依木把扎克叫来,说:“你在我家做了19年,现在我给你19斤油,你走吧!”扎克一听急了,说:“老爷,你讲的每年给‘一头牛’的工钱,怎么变成‘一斤油’了呢!”古依木两眼一瞪,咆哮说:“那是你听错了,老爷还会赖你吗?”不容分说就把他赶出了门。 扎克提了19斤油呆呆的坐在路旁。
这时正好看见阿凡提骑着小毛驴过来了。扎克连忙把这事告诉阿凡提,请他帮忙算回工钱。
阿凡提想了片刻说,好,我和你一起上古依木家里去评理。” 古依木在家里正在喝酒,冷不防阿凡提和扎克走了进来,古依木心里有点慌,装着笑脸道:“阿凡提先生驾到,不知有何贵干?”阿凡提说:“扎克想做个小生意,特来借三两银子,由我作保,不知老爷肯不肯。”
古依木一听,心宽了,连说:“有阿凡提先生作保,当然可以。扎克是老实人,年息对本对利就行了。”
于是,三对六面写好了借据。古依木正要去拿银子,阿凡提拉住了他说:“办事情要公平,借你的钱是对本对利,那么,阿凡提每年一斤油存在你这里,也应该对本对利。”
古依木眼珠一转,暗想十九斤油的利钱能有多少,大不了几百斤油吧!就说:“好吧,看在阿凡提先生的面上,算出多少,我照付就是了。” 于是,阿凡提拿过算盘说:头一年,工钱1斤,第二年加利息1斤,加工钱1斤,共3斤,第三年是7斤,第四年是15斤……不到一刻工夫,算出了结果,把大地主古依木吓得目瞪口呆。
最后连连央求:“阿凡提先生,请你向扎克说说好话,我情愿还他19头牛的工钱!” 扎克拿到了19头牛的工钱,三两银子当然不借了。 请问小朋友,每年一斤油,按照古依木对本对利的算法,19年的本息账,到底是多少? 3、辨方向 早晨起床面向阳,开动脑筋想一想; 前是东来后是西,左是北来右是南; 伸出左右两只手,东南西北记得牢; 地图方位有规定,上是北来下是南; 左是西来右是东,小朋友们要分清。
4、小学一年级数学趣味题1、黑兔、兔和白兔三只兔子在赛跑。黑免说:“我跑得不是最快的,但比白兔快。”
请你说说,谁跑得最快?谁跑得最慢? ( )跑得最快,( )跑得最慢。 2、三个小朋友比大小。
根据下面三句话,请你猜一猜,谁最大?谁最小? (1)芳芳比阳阳大3岁; (2)燕燕比芳芳小1岁; (3)燕燕比阳阳大2岁。 ( )最大,( )最小。
3、根据下面三句话,猜一猜三位老师年纪的大小。 (1)王老师说:“我比李老师小。”
(2)张老师说:“我比王老师大。” (3)李老师说:“我比张老师小。”
年纪最大的是( ),最小的是( )。 4、光明幼儿园有三个班。
根据下面三句括,请你猜一措,哪一班人数最少?哪一班人数最多? (1)中班比小班少; (2)中班比大班少; (3)大班比小班多。 ( )人数最少,( )人数最多。
5、三个同学比身高。 甲说:我比乙高; 乙说:我比丙矮; 丙:说我比甲高。
( )最高,( )最矮。 6、四个小朋友比体重。
甲比乙重,乙比丙轻,丙比甲重,丁最重。 这四个小朋友的体重顺序是: ( )>( )>( )>( )。
7、小清、小红、小琳、小强四个人比高矮。 小清说我比小红高;小琳说小强比小红矮; 小强说:小琳比我还矮。
请按从高到矮的顺序把名字写出来: ( )、( )、( )、( )。 8、有四个木盒子。
蓝盒子比黄盒子大;蓝盒子比黑盒子小;黑盒子比红盒子小。请按照从大到小的顺度,把盒子排队。
( )盒子,( )盒子,( )盒子,( )盒子。 9.张、黄、李分别是三位小朋友的姓。
根据下面三句话,请你猜一猜,三位小朋友各姓什么? (1)甲。
3.一年级数学趣味小故事
1、小松鼠要过冬了
冬天到了,小松鼠要准备过冬的粮食了。
有一天小松鼠背着一个大袋子,来到森林里,对松树爷爷说:请吧你的松果送给我,好吗?松树爷爷很大方,说:你想要多少摘多少。小松鼠很高兴,它一边摘一边唱歌,不一会袋子装满了。松树爷爷问: 你摘了多少个?小松鼠说:哎呀, 我忘了!松树爷爷笑着说“我长了16 个松果,现在还有9个,你能算出摘了多少个,就让你背走。”小松树急了,不会算,怎么办呢?要是松树爷爷不让它背走,那冬天吃什么呢?我来帮它好了。
数学课上,老师讲过:知道总数,求部分数,就是从总数里去掉知道的一个部分数,就得另一部分数,用减法计算。我很快就算出来了,小松鼠摘了16-9=7(个)。
2、小朋友们你们可知道数学天才高斯小时候的故事吗?高斯在小学二年级时,有一次老师教完加法后想休息一下,所以便出了一道题目要求学生算算看,题目是:1+2+3+4………+96+97+98+99+100=?本以为学生们必然会安静好一阵子,正要找借口出去时,却被高斯叫住了!原来呀,高斯已经算出来了,小朋友你可知道他是怎么算的吗?高斯告诉大家他是如何算出的:将1加至100与100加至1;排成两排想加,也就是说:1+2+3+4+…………+96+97+98+99+100+100+99+98+97+96+…………+4+3+2+1=101+101+101+…………+101+101+101+101共有一百个101,但算式重复两次,所以把10100除以2便得到答案等于5050。从此以后高斯小学的学习过程早已经超过了其他的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才。
3、鸡兔同笼你听说过“鸡兔同笼”的问题吗?这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》就记载了这个有趣的问题。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”。这样,(1)鸡和兔的脚的总数就由94只变成了47只;(2)如果笼子里有一只兔子,则脚的总数就比头的总数多1。因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只)。显然,鸡的只数就是35-12=23(只)了。这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已。这种思维方法叫化归法。化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,直到最终把它归成某个已经解决的问题。
4、唐僧师徒摘桃子
一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子。不长时间,徒弟三人摘完桃子高高兴兴回来。师父唐僧问:你们每人各摘回多少个桃子?
八戒憨笑着说:师父,我来考考你。我们每人摘的一样多,我筐里的桃子不到100个,如果3个3个地数,数到最后还剩1个。你算算,我们每人摘了多少个?
沙僧神秘地说:师父,我也来考考你。我筐里的桃子,如果4个4个地数,数到最后还剩1个。你算算,我们每人摘了多少个?
悟空笑眯眯地说:师父,我也来考考你。我筐里的桃子,如果5个5个地数,数到最后还剩1个。你算算,我们每人摘多少个?
是多少呢?
4.求小学一年级数学故事趣味题 并求答案
一年级趣味数学——老虎认亲故事
哼哼对怎样算出来比例一样,不大明白。
老虎挺了挺胸说:“这个容易,这个正方形有4*4=16个方格,你看看黑色的占了多少方格,就可以算出比例来。”
哼哼把头一歪,问:“有的黑色的占了多半个方格,有的占小半个方格,这怎么算啊?”
老虎说:“凡是黑色的占够了半个方格就算一个方格,如果不够半个方格就算0个方格,也就是不算啦!”
“1、2、3……11,你的黑色花纹占11个方格;1、2、3……11,
前是一家人,是亲戚!亲戚亲,亲戚亲,砸断骨头还连着筋!”
哼哼上下打量一下老虎,问:“唉,上一次我见到你还挺笨,怎么一转眼变得这样聪明啦?”
老虎乐呵呵地说:“那是有聪明的狈帮助嘛!”
“聪明的狈是什么东西?”哼哼追问。
老虎自觉说走了嘴,赶紧改口说:“不,是我变得聪明了呗!”
“聪明得这样快?不对,我要考你一个问题。”哼哼说,“在一个大笼子里装有野鸡和兔子,从上面数有35个头,下面数有94只脚,问笼子里有多少只野鸡、多少只兔子?”
老虎立即答出:“一只也没有啦!”
哼哼一皱眉头问:“怎么回事?”
老虎说:“都叫我吃啦!”
哼哼一瞪眼睛说:“这是做算术题,不许吃!”
老虎眼珠一转,说:“你等一下,我去找个安静地方算一算。”说完就消失在密林中。
老虎找到狈,说:“哼哼考我一道题,我不会做。”接着把题目说了一遍。
狈干笑了两声说:“这是‘鸡兔同笼’老问题。有现成的公式:兔数=
12=23(只)。”
“兔子12只,野鸡23只,我这就去告诉小花猪。”老虎扭头就往回跑
5.一年级数学小故事50个字
1. 猴子捞帽
一群猴子在井旁玩,一阵风将一只猴子的帽子吹到井里,他招呼来18个小伙伴,从井上方的松上一个接一个去捞帽子,有4只猴子没有上树,就捞着了帽子,问:是几只猴子上树下井接在一起把帽子捞上来的?
2. “0”与“1”的小故事
在神秘的数学王国里,胖子“0”与瘦子“1”这两个“小有名气”的数字,常常为了谁重要而争执不休。瞧!今天,这两个小冤家狭路相逢,彼此之间又展开了一场舌战。瘦子“1”抢先发言:“哼!胖胖的'0',你有什么了不起?就像100,如果没有我这个瘦子'1',你这两个胖'0'有什么用?”胖子“0”不服气了:“你也甭在我面前耍威风,想想看,要是没有我,你上哪找其它数来组成100呢?”“哟!”“1”不甘示弱,“你再神气也不过是表示什么也没有,看!'1+0'还不等于我本身,你哪点儿派得上用场啦?”“去!'1*0'结果也还不是我,你'1'不也同样没用!”“0”针锋相对。“你……”“1”顿了顿,随机应变道,“不管怎么说,你'0'就是表示什么也没有!”“这就是你见识少了。”“0”不慌不忙地说,“你看,日常生活中,气温0度,难道是没有温度吗?再比如,直尺上没有我作为起点,哪有你'1'呢?”“再怎么比,你也只能做中间数或尾数,如1037、1307,永远不能领头。”“1”信心十足地说。听了这话,“0”更显得理直气壮地说:“这可说不定了,如0.1,没有我这个'0'来占位,你可怎么办?”眼看着胖子“0”与瘦子“1”争得脸红耳赤,谁也不让谁,一旁观战的其他数字们都十分着急。这时,“9”灵机一动,上前做了个暂停的手势:“你俩都别争了,瞧你们,'1'、'0'有哪个数比我大?”“这……”胖子“0”、瘦子“1”哑口无言。这时,“9”才心平气和地说:“'1'、'0',其实,只要你们站在一块,不就比我大了吗?”“1”、“0”面面相觑,半晌才搔搔头笑了。“这才对嘛!团结的力量才是最重要的!”“9”语重心长地说。
3. 小松鼠要过冬了
冬天到了,小松鼠要准备过冬的粮食了。有一天小松鼠背着一个大袋子,来到森林里,对松树爷爷说:请吧你的松果送给我,好吗?松树爷爷很大方,说:你想要多少摘多少。小松鼠很高兴,它一边摘一边唱歌,不一会袋子装满了。松树爷爷问: 你摘了多少个?小松鼠说:哎呀, 我忘了!松树爷爷笑着说“我长了16 个松果,现在还有9个,你能算出摘了多少个,就让你背走。”小松树急了,不会算,怎么办呢?要是松树爷爷不让它背走,那冬天吃什么呢?我来帮它好了。数学课上,老师讲过:知道总数,求部分数,就是从总数里去掉知道的一个部分数,就得另一部分数,用减法计算。我很快就算出来了,小松鼠摘了16-9=7(个)。
4. 阿凡提的故事
这天,阿凡提骑着他那心爱的小毛驴从外面回来,远远就看见家门口站着一高一矮两个人。
“阿凡提回来了!”高个子和矮个子都迫不及待地迎上去,请阿凡提为他们算算五个铜币该怎么分。阿凡提笑着说:“啊,两位先生,我还不知道是怎么回事情,怎么为你们算呢?”这两人说了一阵子,阿凡提把事情弄清楚了。原来这两人今天合伙做饭吃,高个子拿出了200克大米,矮个子拿出了300克大米。饭做好后,两人正准备吃,忽然来了一个过路人,这个过路人向他们提出了把煮的饭让三个人吃的请求。结果三人一起把饭吃完。过路人临走时,向高个子和矮个子道谢,还留下了5个铜币作饭钱。可5个铜币两人怎么分呢?矮个子说,他出了300克大米,就拿3个铜币,高个子出了200克大米,就拿两个铜币。可高个子说,这5个铜币是过路人给他俩的,应该平分,每人拿两个半铜币。两个人算过来算过去,都不知怎样算才对。
阿凡提告诉高个子和矮个子说:“好办。依我看,应当这样分。”阿凡提说出了他的分法:高个子得1个铜币,矮个子得4个铜币。两人听了非常吃惊,后来在阿凡提讲了这样分法的道理后,他们都很信服,高高兴兴地走了。
小朋友们,你们知道阿凡提为什么要这样分吗?原来是这样的:
因为5个铜币是一个人的饭钱,吃饭的是三个人,所以三个人的饭钱应为15个铜币。这顿饭共用500克大米,那么100克大米的价钱应为3个铜币。高个子出了200克大米,按钱算是6个铜币,他一起吃饭的,应扣饭钱5个铜币,所以他只应得1个铜币。矮个子出了300克大米,按钱算是9个铜币,他也一起吃饭的,也应扣饭钱5个铜币,所以他应得4个铜币。
6.一年级数学小窍门知识
一年级的数学主要就是加减,多练习即可。
一、课内重视听讲,课后及时复习接受一种新的知识,主要实在课堂上进行的,所以要重视课堂上的学习效率,找到适合自己的学习方法,上课时要跟住老师的思路,积极思考。下课之后要及时复习,遇到不懂的地方要及时去问,在做作业的时候,先把老师课堂上讲解的内容回想一遍,还要牢牢的掌握公式及推理过程,尽量不要去翻书。
尽量自己思考,不要急于翻看答案。还要经常性的总结和复习,把知识点结合起来,变成自己的知识体系。
二、多做题,养成良好的解题习惯要想学好数学,大量做题是必可避免的,熟练地掌握各种题型,这样才能有效的提高数学成绩。刚开始做题的时候先以书上习题为主,答好基础,然后逐渐增加难度,开拓思路,练习各种类型的解题思路,对于容易出现错误的题型,应该记录下来,反复加以联系。
在做题的时候应该养成良好的解题习惯,集中注意力,这样才能进入最佳的状态,形成习惯,这样在考试的时候才能运用自如。三、调整心态,正确对待考试考试的时候,大部分的题都是基础题,只有少数几道题时比较难的题,所以我们要调整好心态,鼓励自己,在做题的时候认真思考,不要浮躁,在考试之前做好准备,做一做常规的题型,不要为了赶时间而增加做题速度,要有条不紊的进行。
7.一年级数学趣味故事
1.小松鼠要过冬了
冬天到了,小松鼠要准备过冬的粮食了。
有一天小松鼠背着一个大袋子,来到森林里,对松树爷爷说:请吧你的松果送给我,好吗?松树爷爷很大方,说:你想要多少摘多少。小松鼠很高兴,它一边摘一边唱歌,不一会袋子装满了。松树爷爷问: 你摘了多少个?小松鼠说:哎呀, 我忘了!松树爷爷笑着说“我长了16 个松果,现在还有9个,你能算出摘了多少个,就让你背走。”小松树急了,不会算,怎么办呢?要是松树爷爷不让它背走,那冬天吃什么呢?我来帮它好了。
数学课上,老师讲过:知道总数,求部分数,就是从总数里去掉知道的一个部分数,就得另一部分数,用减法计算。我很快就算出来了,小松鼠摘了16-9=7(个)。
2.高斯在小学二年级时,有一次老师教完加法后想休息一下,所以便出了一道题目要求学生算算看,题目是:1+2+3+4………+96+97+98+99+100=?本以为学生们必然会安静好一阵子,正要找借口出去时,却被高斯叫住了!原来呀,高斯已经算出来了,小朋友你可知道他是怎么算的吗?高斯告诉大家他是如何算出的:将1加至100与100加至1;排成两排想加,也就是说:1+2+3+4+…………+96+97+98+99+100+100+99+98+97+96+…………+4+3+2+1=101+101+101+…………+101+101+101+101共有一百个101,但算式重复两次,所以把10100除以2便得到答案等于5050。从此以后高斯小学的学习过程早已经超过了其他的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才。
数学课外小知识大全(课外数学小知识)
1. 关于六年级数学的趣味小知识
用数学写的人生格言:干下去还有50%成功的希望,不干便是100%的失败——王菊珍
一个人就好像一个分数,他的实际才能好比分子,而他对自己的估价好比分母。分母越大,则分数值就越小。——托尔斯泰
时间是一个常数,但对勤奋者来说,是一个“变数”。用“分”来计算时间的人比用“小时”来计算时间的人时间多59倍——雷巴柯夫
在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有哪些问题没有解决,需要我们去探索解决。——华罗庚
天才=1%的灵感+99%的血汗。——爱迪生
A=x+y+z
其中A代表成功,x代表艰苦的劳动,y代表正确的方法,z代表少说空话。——爱因斯坦
2. 数学趣味小知识 简短的 20到50字左右
趣味数学小知识数论部分:1、没有最大的质数。
欧几里得给出了优美而简单的证明。2、哥德巴赫来猜想:任何一个偶数都能表示成两个质数之和。
陈景润的成果为:任何一个偶数都能表示成一自个质数和不多于两个质数的乘积之和。bai3、费马大定理:x的n次方+y的n次方=z的n次方,n>2时没有整数解。
欧拉证明了3和4,1995年被英国数学家 安德鲁*怀尔斯 证明。拓扑学部分:1、多面体点面棱的关系:定点数+面数=棱数+2,笛卡尔提出,欧拉证明,也称du欧拉定理。
zhi2、欧拉定理推论:可能只有5种正多面体,正四面体,正八面体,正六面体,正二十面体,正十二面dao体。3、把空间翻过来,左手系的物体就能变成右手系的,通过克莱因瓶模拟,一节很好的头脑体操,摘自:/bbs2/ThreadDetailx?id=31900。
3. 六年级趣味数学题,不要太长了
六年级趣味数学题 1、问5条直线最多将平面分为多少份? 2、太阳落下西山坡,鸭儿嘎嘎要进窝。
四分之一岸前走,一半的一半随水波;身后还跟八只鸭,我家鸭子共几多? 3、9棵树种10行,每行3棵,问怎样种? 4、数学谜语:(“/”是分数线) 3/4的倒数 7/8 1/100 1/2 3.4 1的任何次方 以上每条打一成语。 5、一个数,去掉百分号后比原数增加了0.4455,原数是多少? 6、甲、乙、丙三人投资55万元办一个商店。
甲投资总数的1/5,余下的由乙、丙承担,且乙比丙多投资20%。乙投资多少万元? 7、把绳子三折来量,井外余4米;把绳子四折来量,井外余1米。
求井深和绳子各是多少? 8、一筐苹果分给甲、乙、丙。甲分得全部苹果的1/5加5个苹果,乙分得全部苹果的1/4加7个苹果,丙分得余下苹果的一半,最后剩下的是一筐苹果的1/8,求这筐苹果有多少个? 9、某工厂三个车间共有180人,第二车间人数是第一车间人数的3倍还多1人,第三车间人数是第一车间人数的一半少1人。
三个车间各有多少人? 10、有人用车把米从甲地运往乙地,装米的重车日行50千米,空车日行70千米,5日往返三次。甲乙两地相距多少千米? 11、兄弟二人三年后的年龄和是26岁,弟弟今年的年龄恰好是兄弟二人年龄差的2倍。
问,3年后兄弟二人各几岁?有只猴子在树林采了100根香蕉堆成一堆,猴子家离香蕉堆50米,猴子打算把香蕉背会家, 每次最多能背50根,可是猴子嘴馋,每走一米要吃一根香蕉,问猴子最多能背回家几根香 蕉? 例题1:你让工人为你工作7天,给工人的回报是一根金条。金条平分成相连的7段,你必须在每天结束时给他们一段金条,如果只许你两次把金条弄断,你如何给你的工人付费? 例题2:现在小明一家过一座桥,过桥时候是黑夜,所以必须有灯。
现在小明过桥要1秒,小明的弟弟要3秒,小明的爸爸要6秒,小明的妈妈要8秒,小明的爷爷要12秒。每次此桥最多可过两人,而过桥的速度依过桥最慢者而定,而且灯在点燃后30秒就会熄灭。
问小明一家如何过桥? 3、一个经理有三个女儿,三个女儿的年龄加起来等于13,三个女儿的年龄乘起来等于经理自己的年龄,有一个下属已知道经理的年龄,但仍不能确定经理三个女儿的年龄,这时经理说只有一个女儿的头发是黑的,然后这个下属就知道了经理三个女儿的年龄。请问三个女儿的年龄分别是多少?为什么? 4、有三个人去住旅馆,住三间房,每一间房$10元,于是他们一共付给老板$30,第二天,老板觉得三间房只需要$25元就够了于是叫小弟退回$5给三位客人,谁知小弟贪心,只退回每人$1,自己偷偷拿了$2,这样一来便等于那三位客人每人各花了九元,于是三个人一共花了$27,再加上小弟独吞了不$2,总共是$29。
可是当初他们三个人一共付出$30那么还有$1呢? 5、有两位盲人,他们都各自买了两对黑袜和两对白袜,八对袜了的布质、大小完全相同, 而每对袜了都有一张商标纸连着。两位盲人不小心将八对袜了混在一起。
他们每人怎样才能取回黑袜和白袜各两对呢? 6、有一辆火车以每小时15公里的速度离开洛杉矶直奔纽约,另一辆火车以每小时20公里的速度从纽约开往洛杉矶。如果有一只鸟,以30公里每小时的速度和两辆火车同时启动,从洛杉矶出发,碰到另一辆车后返回,依次在两辆火车来回飞行,直到两辆火车相遇,请问,这只小鸟飞行了多长距离? 7、你有两个罐子,50个红色弹球,50个蓝色弹球,随机选出一个罐子,随机选取出一个弹球放入罐子,怎么给红色弹球最大的选中机会?在你的计划中,得到红球的准确几率是多少? 8、你有四个装药丸的罐子,每个药丸都有一定的重量,被污染的药丸是没被污染的重量+1.只称量一次,如何判断哪个罐子的药被污染了? 9、对一批编号为1~100,全部开关朝上(开)的灯进行以下*作:凡是1的倍数反方向拨一次开关;2的倍数反方向又拨一次开关;3的倍数反方向又拨一次开关……问:最后为关熄状态的灯的编号。
10、想象你在镜子前,请问,为什么镜子中的影像可以颠倒左右,却不能颠倒上下? 11、一群人开舞会,每人头上都戴着一顶帽子。帽子只有黑白两种,黑的至少有一顶。
每个人都能看到其它人帽子的颜色,却看不到自己的。主持人先让大家看看别人头上戴的是什幺帽子,然后关灯,如果有人认为自己戴的是黑帽子,就打自己一个耳光。
第一次关灯,没有声音。于是再开灯,大家再看一遍,关灯时仍然鸦雀无声。
一直到第三次关灯,才有劈劈啪啪打耳光的声音响起。问有多少人戴着黑帽子? 12、两个圆环,半径分别是1和2,小圆在大圆内部绕大圆圆周一周,问小圆自身转了几周?如果在大圆的外部,小圆自身转几周呢? 13、1元钱一瓶汽水,喝完后两个空瓶换一瓶汽水,问:你有20元钱,最多可以喝到几瓶汽水? 14 有3顶红帽子,4顶黑帽子,5顶白帽子。
让10个人从矮到高站成一队,给他们每个人头上戴一顶帽子。每个人都看不见自己戴的帽子的颜色,却只能看见站在前面那些人的帽子颜色。
(所以最后一个人可以看见前面9个人头上帽子的颜色,而最前面那个人谁的帽子都看不见。现在从最后那个人开始,问他是不是知道自。
4. 求六年级趣味数学小故事
在神秘的数学王国里,胖子“0”与瘦子“1”这两个“小有名气”的数字,常常为了谁重要而争执不休。瞧!今天,这两个小冤家狭路相逢,彼此之间又展开了一场舌战。
瘦子“1”抢先发言:“哼!胖胖的'0',你有什么了不起?就像100,如果没有我这个瘦子'1',你这两个胖'0'有什么用?”
胖子“0”不服气了:“你也甭在我面前耍威风,想想看,要是没有我,你上哪找其它数来组成100呢?”
“哟!”“1”不甘示弱,“你再神气也不过是表示什么也没有,看!'1+0'还不等于我本身,你哪点儿派得上用场啦?”
“去!'1*0'结果也还不是我,你'1'不也同样没用!”“0”针锋相对。
“你……”“1”顿了顿,随机应变道,“不管怎么说,你'0'就是表示什么也没有!”
“这就是你见识少了。”“0”不慌不忙地说,“你看,日常生活中,气温0度,难道是没有温度吗?再比如,直尺上没有我作为起点,哪有你'1'呢?”
“再怎么比,你也只能做中间数或尾数,如1037、1307,永远不能领头。”“1”信心十足地说。听了这话,“0”更显得理直气壮地说:“这可说不定了,如0.1,没有我这个'0'来占位,你可怎么办?”
眼看着胖子“0”与瘦子“1”争得脸红耳赤,谁也不让谁,一旁观战的其他数字们都十分着急。这时,“9”灵机一动,上前做了个暂停的手势:“你俩都别争了,瞧你们,'1'、'0'有哪个数比我大?”“这……”胖子“0”、瘦子“1”哑口无言。这时,“9”才心平气和地说:“'1'、'0',其实,只要你们站在一块,不就比我大了吗?”“1”、“0”面面相觑,半晌才搔搔头笑了。“这才对嘛!团结的力量才是最重要的!”“9”语重心长地说。 可以不?
5. 六年级数学基础知识大全
小学数学基础知识整理(一到六年级) 小学一年级 九九乘法口诀表。
学会基础加减乘。小学二年级 完善乘法口诀表,学会除混合运算,基础几何图形。
小学三年级 学会乘法交换律,几何面积周长等,时间量及单位。路程计算,分配律,分数小数。
小学四年级 线角自然数整数,素因数梯形对称,分数小数计算。小学五年级 分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。
小学六年级 比例百分比概率,圆扇圆柱及圆锥。必背定义、定理公式 三角形的面积=底*高÷2。
公式 S= a*h÷2 正方形的面积=边长*边长 公式 S= a*a 长方形的面积=长*宽 公式 S= a*b 平行四边形的面积=底*高 公式 S= a*h 梯形的面积=(上底+下底)*高÷2 公式 S=(a+b)h÷2 内角和:三角形的内角和=180度。长方体的体积=长*宽*高 公式:V=abh 长方体(或正方体)的体积=底面积*高 公式:V=abh 正方体的体积=棱长*棱长*棱长 公式:V=aaa 圆的周长=直径*π 公式:L=πd=2πr 圆的面积=半径*半径*π 公式:S=πr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh 圆锥的体积=1/3底面*积高。公式:V=1/3Sh 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。读懂理解会应用以下定义定理性质公式 一、算术方面1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)*5=2*5+4*56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
数量关系计算公式方面1、单价*数量=总价2、单产量*数量=总产量3、速度*时间=路程4、工效*时间=工作总量5、加数+加数=和 一个加数=和+另一个加数 被减数-减数=差 减数=被减数-差 被减数=减数+差 因数*因数=积 一个因数=积÷另一个因数 被除数÷除数=商 除数=被除数÷商 被除数=商*除数 有余数的除法: 被除数=商*除数+余数 一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5*6)6、1公里=1千米 1千米=1000米1米=10分米 1分米=10厘米 1厘米=10毫米1平方米=100平方分米 1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米 1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克 1千克= 1000克= 1公斤= 1市斤1公顷=10000平方米。
1亩=666.666平方米。1升=1立方分米=1000毫升 1毫升=1立方厘米7、什么叫比:两个数相除就叫做两个数的比。
如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。8、什么叫比例:表示两个比相等的式子叫做比例。
如3:6=9:189、比例的基本性质:在比例里,两外。
6. 小学六年级的数学趣味题 最好有答案过程
1、两个男孩各骑一辆自行车,从相距2O英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。
在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。
这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1O英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里? 答案 每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2O英里距离的中点。
苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。 许多人试图用复杂的方法求解这道题目。
他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。
据说,在一次鸡尾酒会上,有人向约翰?冯·诺伊曼(John von Neumann, 1903~1957,20世纪最伟大的数学家之一。)提出这个问题,他思索片刻便给出正确答案。
提问者显得有点沮丧,他解释说,绝大多数数学家总是忽略能解决这个问题的简单方法,而去采用无穷级数求和的复杂方法。 冯·诺伊曼脸上露出惊奇的神色。
“可是,我用的是无穷级数求和的方法.”他解释道 2、有位渔夫,头戴一顶大草帽,坐在划艇上在一条河中钓鱼。河水的流动速度是每小时3英里,他的划艇以同样的速度顺流而下。
“我得向上游划行几英里,”他自言自语道,“这里的鱼儿不愿上钩!” 正当他开始向上游划行的时候,一阵风把他的草帽吹落到船旁的水中。但是,我们这位渔夫并没有注意到他的草帽丢了,仍然向上游划行。
直到他划行到船与草帽相距5英里的时候,他才发觉这一点。于是他立即掉转船头,向下游划去,终于追上了他那顶在水中漂流的草帽。
在静水中,渔夫划行的速度总是每小时5英里。在他向上游或下游划行时,一直保持这个速度不变。
当然,这并不是他相对于河岸的速度。例如,当他以每小时5英里的速度向上游划行时,河水将以每小时3英里的速度把他向下游拖去,因此,他相对于河岸的速度仅是每小时2英里;当他向下游划行时,他的划行速度与河水的流动速度将共同作用,使得他相对于河岸的速度为每小时8英里。
如果渔夫是在下午2时丢失草帽的,那么他找回草帽是在什么时候? 答案 由于河水的流动速度对划艇和草帽产生同样的影响,所以在求解这道趣题的时候可以对河水的流动速度完全不予考虑。虽然是河水在流动而河岸保持不动,但是我们可以设想是河水完全静止而河岸在移动。
就我们所关心的划艇与草帽来说,这种设想和上述情况毫无无差别。 既然渔夫离开草帽后划行了5英里,那么,他当然是又向回划行了5英里,回到草帽那儿。
因此,相对于河水来说,他总共划行了10英里。渔夫相对于河水的划行速度为每小时5英里,所以他一定是总共花了2小时划完这10英里。
于是,他在下午4时找回了他那顶落水的草帽。 这种情况同计算地球表面上物体的速度和距离的情况相类似。
地球虽然旋转着穿越太空,但是这种运动对它表面上的一切物体产生同样的效应,因此对于绝大多数速度和距离的问题,地球的这种运动可以完全不予考虑. 3、一架飞机从A城飞往B城,然后返回A城。在无风的情况下,它整个往返飞行的平均地速(相对于地面的速度)为每小时100英里。
假设沿着从A城到B城的方向笔直地刮着一股持续的大风。如果在飞机往返飞行的整个过程中发动机的速度同往常完全一样,这股风将对飞机往返飞行的平均地速有何影响? 怀特先生论证道:“这股风根本不会影响平均地速。
在飞机从A城飞往B城的过程中,大风将加快飞机的速度,但在返回的过程中大风将以相等的数量减缓飞机的速度。”“这似乎言之有理,”布朗先生表示赞同,“但是,假如风速是每小时l00英里。
飞机将以每小时200英里的速度从A城飞往B城,但它返回时的速度将是零!飞机根本不能飞回来!”你能解释这似乎矛盾的现象吗? 答案 怀特先生说,这股风在一个方向上给飞机速度的增加量等于在另一个方向上给飞机速度的减少量。这是对的。
但是,他说这股风对飞机整个往返飞行的平均地速不发生影响,这就错了。 怀特先生的失误在于:他没有考虑飞机分别在这两种速度下所用的时间。
逆风的回程飞行所用的时间,要比顺风的去程飞行所用的时间长得多。其结果是,地速被减缓了的飞行过程要花费更多的时间,因而往返飞行的平均地速要低于无风时的情况。
风越大,平均地速降低得越厉害。当风速等于或超过飞机的速度时,往返飞行的平均地速变为零,因为飞机不能往回飞了。
4、《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。
原题如下: 令有雉(鸡)兔同笼,上有三十五头,下有九十四足。 问雄、兔各几何? 原书的解法是;设头数是a,足数是b。
7. 数学小知识,要六年级的
1、杨辉三角是一个由数字排列成的三角形数表,一般形式如下: 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 … … … … … 杨辉三角最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和。
其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。
杨辉,字谦光,北宋时期杭州人。在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。
而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。现在要求我们用编程的方法输出这样的数表。
2、一个故事引发的数学家 陈景润一个家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了著名的“陈氏定理”,所以有许多人亲切地称他为“数学王子”。但有谁会想到,他的成就源于一个故事。
1937年,勤奋的陈景润考上了福州英华书院,此时正值抗日战争时期,清华大学航空工程系主任留英博士沈元教授回福建奔丧,不想因战事被滞留家乡。几所大学得知消息,都想邀请沈教授前进去讲学,他谢绝了邀请。
由于他是英华的校友,为了报达母校,他来到了这所中学为同学们讲授数学课。 一天,沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,28=5+23,100=11+89。
每个大于4的偶数都可以表示为两个奇数之和。因为这个结论没有得到证明,所以还是一个猜想。
大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。 它像一个美丽的光环,在我们不远的前方闪耀着眩目的光辉。
……”陈景润瞪着眼睛,听得入神。 从此,陈景润对这个奇妙问题产生了浓厚的兴趣。
课余时间他最爱到图书馆,不仅读了中学辅导书,这些大学的数理化课程教材他也如饥似渴地阅读。因此获得了“书呆子”的雅号。
兴趣是第一老师。正是这样的数学故事,引发了陈景润的兴趣,引发了他的勤奋,从而引发了一位伟大的数学家。
3、为科学而疯的人 由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战。
他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷 *** ”问题发表了一系列文章,通过严格证明得出了许多惊人的结论。
康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托尔的 *** 论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”。
来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院。 真金不怕火炼,康托尔的思想终于大放光彩。
1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作。”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。
1918年1月6日,康托尔在一家精神病院去世。 康托尔(1845—1918),生于俄国彼得堡一丹麦犹太血统的富商家庭,10岁随家迁居德国,自幼对数学有浓厚兴趣。
23岁获博士学位,以后一直从事数学教学与研究。他所创立的 *** 论已被公认为全部数学的基础。
4、数学家的“健忘” 我国数学家吴文俊教授六十寿辰那天,仍如往常,黎明即起,整天浸沉在运算和公式中。 有人特地选定这一天的晚间登门拜门拜访,寒暄之后,说明来意:“听您夫 人说,今天是您六十大寿,特来表示祝贺。”
吴文俊仿佛听了一件新闻,恍然大悟地说:“噢,是吗?我倒忘了。” 来人暗暗吃惊,心想:数学家的脑子里装满了数字,怎么连自己的生日也记不住? 其实,吴文俊对日期的记忆力是很强的。
他在将近花甲之年的时候,又先攻 了一个难题——“机器证明”。这是为了改变了数学家“一支笔、一张纸、一个脑袋”的劳动方式,运用电子计算机来实现数学证明,以便数学家能腾出更多的时间来进行创造性的工作,他在进行这项课题的研究过程中,对于电子计算机安装的日期、为计算机最后编成三百多道“指令”程序的日期,都记得一清二楚。
后来,那位祝寿的来客在闲谈中问起他怎么连自己生日也记不住的时候,他知着回答: “我从来不记那些没有意义的数字。在我看来,生日,早一天,晚一天,有 什么要紧?所以,我的生日,爱人的生日,孩子的生日,我一概不记,他从不想 要为自己或家里的人庆祝生日,就连我结婚的日子,也忘了。
但是,有些数字非记不可,也很容易记住……” 5、苹果树下的例行出步 1884年春天,年轻的数学家阿道夫·赫维茨从哥廷根来到哥尼斯堡担任副教授,年龄还不到25。
数学小知识题目
1.课外数学小知识
一、哥德巴赫猜想 1742年德国人哥德巴赫给当时住在俄国彼得堡的大数学家欧拉写了一封信,在信中提出两个问题:第一,是否每个大于4的偶数都能表示为两个奇质数之和?如6=3+3,14=3+11等。
第二,是否每个大于7的奇数都能表示3个奇质数之和?如9=3+3+3,15=3+5+7等。这就是著名的哥德巴赫猜想。
它是数论中的一个著名问题,常被称为数学皇冠上的明珠。 二、在很久以前印度有个叫塞萨的人,精心设计了一种游戏献给国王,就是现在的64格国际象棋。
国王对这种游戏非常满意,决定赏赐塞萨。国王问塞萨需要什么,塞萨指着象棋盘上的小格子说:“就按照棋盘上的格子数,在第一个小格内赏我1粒麦子,在第二个小格内赏我2粒麦子,第三个小格内赏4粒,照此下去,每一个小格内的麦子都比前一个小格内的麦子加一倍。
陛下,把这样摆满棋盘所有64格的麦粒,都赏给我吧。”国王听后不加思索就满口答应了塞萨的要求。
但是经过大臣们计算发现,就是把全国一年收获的小麦都给塞萨,也远远不够。赛萨的话没有错,他的要求的确是满足不了的。
根据计算,棋盘上六十四个格子小麦的总数将是一个十九位数,折算为重量,大约是两千多亿吨。国王拥有至高无尚的权力,却用其无知诠释着知识的深奥。
三、古希腊的智者是怎样测量金字塔的高度的 先在地上立一竹竿,在有太阳的同一时刻分别测量竹竿的影子和金字塔的影子的长度,然后计算出竹竿长度与竹竿影子长度的比例,这个比例就是金字塔高度与金字塔影子的长度的比例。用这个比例和金字塔影长就可以计算出金字塔的高度。
2.关于数学的小知识
数学小知识
--------------------------------------------------------------------------------
数学符号的起源
数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系。数学符号的发明和使用比数字晚,但是数量多得多。现在常用的有200多个,初中数学书里就不下20多种。它们都有一段有趣的经历。
例如加号曾经有好几种,现在通用"+"号。
"+"号是由拉丁文"et"("和"的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文"più"(加的意思)的第一个字母表示加,草为"μ"最后都变成了"+"号。
"-"号是从拉丁文"minus"("减"的意思)演变来的,简写m,再省略掉字母,就成了"-"了。
到了十五世纪,德国数学家魏德美正式确定:"+"用作加号,"-"用作减号。
乘号曾经用过十几种,现在通用两种。一个是"*",最早是英国数学家奥屈特1631年提出的;一个是"· ",最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:"*"号象拉丁字母"X",加以反对,而赞成用"· "号。他自己还提出用"п"表示相乘。可是这个符号现在应用到 *** 论中去了。
到了十八世纪,美国数学家欧德莱确定,把"*"作为乘号。他认为"*"是"+"斜起来写,是另一种表示增加的符号。
"÷"最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用":"表示除或比,另外有人用"-"(除线)表示除。后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将"÷"作为除号。
十六世纪法国数学家维叶特用"="表示两个量的差别。可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号"="就从1540年开始使用起来。
1591年,法国数学家韦达在菱中大量使用这个符号,才逐渐为人们接受。十七世纪德国莱布尼茨广泛使用了"="号,他还在几何学中用"∽"表示相似,用"≌"表示全等。
大于号"〉"和小于号"〈",是1631年英国著名代数学家赫锐奥特创用。至于≯""≮"、"≠"这三个符号的出现,是很晚很晚的事了。大括号"{ }"和中括号"[ ]"是代数创始人之一魏治德创造
3.数学趣味小知识 简短的 20到50字左右
趣味数学小知识
数论部分:
1、没有最大的质数。欧几里得给出了优美而简单的证明。
2、哥德巴赫猜想:任何一个偶数都能表示成两个质数之和。陈景润的成果为:任何一个偶数都能表示成一个质数和不多于两个质数的乘积之和。
3、费马大定理:x的n次方+y的n次方=z的n次方,n>2时没有整数解。欧拉证明了3和4,1995年被英国数学家
安德鲁*怀尔斯
证明。
拓扑学部分:
1、多面体点面棱的关系:定点数+面数=棱数+2,笛卡尔提出,欧拉证明,也称欧拉定理。
2、欧拉定理推论:可能只有5种正多面体,正四面体,正八面体,正六面体,正二十面体,正十二面体。
3、把空间翻过来,左手系的物体就能变成右手系的,通过克莱因瓶模拟,一节很好的头脑体操,
摘自:/bbs2/ThreadDetailx?id=31900
4.数学小知识50字以上,200字以下
1、数学是无穷的科学. ——外尔(Weil)
2、问题是数学的心脏.—— 哈尔默斯(P.R.Halmos )
3、只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示着独立发展的终止或衰亡.—— 希尔伯特(Hilbert )
4、数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深.——高斯 (Gauss)
5、数学是科学6、数学比喻: 古希腊哲学家芝诺号称"悖论之父",他有四个数学悖论一直传到今天。他曾讲过一句名言:"大圆圈比小圆圈掌握的知识要多一点,但因为大圆圈的圆周比小圆圈的长,所以它与外界空白的接触面也就比小圆圈大,因此更感到知识的不足,需要努力去学习"。
7、把数学当成一门语言学习,学会每一个术语的用法,熟悉每一个符号的意义
8、不要放过任何一道看上去很简单的例题——他们往往并不那么简单,或者可以引申出很多知识点。
9、会用数学公式,并不说明你会数学。
10、如果不是天才的话,想学数学就不要想玩游戏——你以为你做到了,其实你的数学水平并没有和你通关的能力一起变高——其实可以时刻记住:学数学是你玩“生活”这个大游戏玩的更好!
的皇后,而数论是数学的皇后 ——高斯(Gauss)
5.关于数学的小知识
1,零
在很早的时候,以为“1”是“数字字符表”的开始,并且它进一步引出了2,3,4,5等其他数字。这些数字的作用是,对那些真实存在的物体,如苹果、香蕉、梨等进行计数。直到后来,才学会,当盒子里边已经没有苹果时,如何计数里边的苹果数。
2,数字系统
数字系统是一种处理“多少”的方法。不同的文化在不同的时代采用了各种不同的方法,从基本的“1,2,3,很多”延伸到今天所使用的高度复杂的十进制表示方法。
3,π
π是数学中最著名的数。忘记自然界中的所有其他常数也不会忘记它,π总是出现在名单中的第一个位置。如果数字也有奥斯卡奖,那么π肯定每年都会得奖。
π或者pi,是圆周的周长和它的直径的比值。它的值,即这两个长度之间的比值,不取决于圆周的大小。无论圆周是大是小,π的值都是恒定不变的。π产生于圆周,但是在数学中它却无处不在,甚至涉及那些和圆周毫不相关的地方。
4,代数
代数给了一种崭新的解决间题的方式,一种“回旋”的演年方法。这种“回旋”是“反向思维”的。让我们考虑一下这个问题,当给数字25加上17时,结果将是42。这是正向思维。这些数,需要做的只是把它们加起来。
但是,假如已经知道了答案42,并提出一个不同的问题,即现在想要知道的是什么数和25相加得42。这里便需要用到反向思维。想要知道未知数x的值,它满足等式25+x=42,然后,只需将42减去25便可知道答案。
5,函数
莱昂哈德·欧拉是瑞士数学家和物理学家。欧拉是第一个使用“函数”一词来描述包含各种参数的表达式的人,例如:y?=?F(x),他是把微积分应用于物理学的先驱者之一。
6.数学小知识
1.、王菊珍的百分数
我国科学家王菊珍对待实验失败有句格言,叫做“干下去还有50%成功的希望,不干便是100%的失败。”
2、托尔斯泰的分数
俄国大文豪托尔斯泰在谈到人的评价时,把人比作一个分数。他说:“一个人就好像一个分数,他的实际才能好比分子,而他对自己的估价好比分母。分母越大,则分数的值就越小。”
1、数学的本质在於它的自由. 康扥尔(Cantor)
2、在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要. 康扥尔(Cantor)
3、没有任何问题可以向无穷那样深深的触动人的情感, 很少有别的观念能像无穷那样激励理智产生富有成果的思想, 然而也没有任何其他的概念能向无穷那样需要加以阐明. 希尔伯特(Hilbert)
4、数学是无穷的科学. 赫尔曼外尔
5、问题是数学的心脏. P.R.Halmos
6、只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示着独立发展的终止或衰 亡. Hilbert
7、数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深. 高斯
3、雷巴柯夫的常数与变数
俄国历史学家雷巴柯夫在利用时间方面是这样说的:“时间是个常数,但对勤奋者来说,是个‘变数’。用‘分’来计算时间的人比用‘小时’来计算时间的人时间多59倍。”
二、用符号写格言
4、华罗庚的减号
我国著名数学家华罗庚在谈到学习与探索时指出:“在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有那些问题没有解决,需要我们去探索解决。”
5、爱迪生的加号
大发明家爱迪生在谈天才时用一个加号来描述,他说:“天才=1%的灵感+99%的血汗。”
6、季米特洛夫的正负号
著名的国际工人运动活动家季米特洛夫在评价一天的工作时说:“要利用时间,思考一下一天之中做了些什么,是‘正号’还是‘负号’,倘若是‘+’,则进步;倘若是‘-’,就得吸取教训,采取措施。”
三、用公式写的格言
7、爱因斯坦的公式
近代最伟大的科学家爱因斯坦在谈成功的秘诀时,写下一个公式:A=x+y+z。并解释道:A代表成功,x代表艰苦的劳动,y代表正确的方法,Z代表少说空话。”
四年级数学科普小知识数学报
1. 数学常识选择题
二、选择题
1、被誉为中国现代数学祖师的是( )。
A、姜伯驹 B、苏步青 C、姜立夫
2、中国的第一份数学刊物--《算学报》是由( )创办的。
A、黄庆澄 B、孙诒让 C、陆善镇
3、为温州题词“数学家之乡”的国际数学大师是( ),他还曾荣获沃尔夫大奖。
A、陈省身 B、陈景润 C、华罗庚
4、荣获1989年台湾当局颁发的景星奖章是( )。
A、柯召 B、徐贤修 C、项武忠
5、1988年被英国国际传记中心收入《世界名人录》的是( )。
A、李邦河 B、方德植 C、姜伯驹
6、( )教授获得被称为“数学界的诺贝尔奖”的“菲尔兹奖”,成为获得该奖项的第一位华裔数学家。
A、姜立夫 B、陈省身 C、丘成桐
7、1988年获陈省身数学奖,1996年获何梁何利基金科学技术进步奖,2002年获华罗庚数学奖的数学家是( )
A、姜立夫 B、陈省身 C、姜伯驹
8、2003年上海市授予第一届科技功臣称号的是( )。
A、项黻宸 B、苏步青 C、谷超豪
9、中国最早的数学专科学校是由清末著名教育家( )创办的。
A、孙诒让 B、李锐夫 C、黄庆澄
10、中国数学机械化研究的创始人是( )。
A、李邦河 B、吴文俊 C、姜伯驹
11、1958年-1968年荣获台湾第一届中山奖和台湾当局教育部的第一部著作奖的是( )。
A、项黻宸 B、杨忠道 C、谷超豪
12、( )是我国当代第一个完全由国内培养的、以其科研成果赢得国际数学界注目的数学家。
A、方德植 B、丘成桐 C、李锐夫
13、现任第五届国务院学位委员会学科评议组成员,曾获国家教委科技进步一等奖和国家自然科学四等奖的是( )。
A、李锐夫 B、白正国 C、陆善镇
答案:
二、选择题
1、C
2、A
3、A
4、B
5、B
6、C
7、C
8、C
9、A
10、B
11、A
12、A
13、C
2. 有关数学的小知识
对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧? 一、重视课内听讲,课后及时进行复习. 新知识的接受和数学能力的培养主要是在课堂上进行的,所以我们必须特别注意课堂学习的效率,寻找正确的学习方法.在课堂上,我们必须遵循教师的思想,积极制定以下步骤,思考和预测解决问题的思想与教师之间的差异.特别是,我们必须了解基本知识和基本学习技能,并及时审查它们以避免疑虑.首先,在进行各种练习之前,我们必须记住教师的知识点,正确理解各种公式的推理过程,并试着记住而不是采用"不确定的书籍阅读".勤于思考,对于一些问题试着用大脑去思考,认真分析问题,尝试自己解决问题. 二、多做习题,养成解决问题的好习惯. 如果你想学好数学,你需要提出更多问题,熟悉各种问题的解决问题的想法.首先,我们先从课本的题目为标准,反复练习基本知识,然后找一些课外活动,帮助开拓思路练习,提高自己的分析和掌握解决的规律.对于一些易于查找的问题,您可以准备一个用于收集的错题本,编写自己的想法来解决问题,在日常养成解决问题的好习惯.学会让自己高度集中精力,使大脑兴奋,快速思考,进入最佳状态并在考试中自由使用. 三、调整心态并正确对待考试. 首先,主要的重点应放在基础、基本技能、基本方法,因为大多数测试出于基本问题,较难的题目也是出自于基本.所以只有调整学习的心态,尽量让自己用一个清楚的头脑去解决问题,就没有太难的题目.考试前要多对习题进行演练,开阔思路,在保证真确的前提下提高做题的速度.对于简单的基础题目要拿出二十分的把握去做;难得题目要尽量去做对,使自己的水平能正常或者超常发挥. 由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去。
3. 数学趣味小知识 简短的 20到50字左右
趣味数学小知识
数论部分:
1、没有最大的质数。欧几里得给出了优美而简单的证明。
2、哥德巴赫猜想:任何一个偶数都能表示成两个质数之和。陈景润的成果为:任何一个偶数都能表示成一个质数和不多于两个质数的乘积之和。
3、费马大定理:x的n次方+y的n次方=z的n次方,n>2时没有整数解。欧拉证明了3和4,1995年被英国数学家 安德鲁*怀尔斯 证明。
拓扑学部分:
1、多面体点面棱的关系:定点数+面数=棱数+2,笛卡尔提出,欧拉证明,也称欧拉定理。
2、欧拉定理推论:可能只有5种正多面体,正四面体,正八面体,正六面体,正二十面体,正十二面体。
3、把空间翻过来,左手系的物体就能变成右手系的,通过克莱因瓶模拟,一节很好的头脑体操,
摘自:/bbs2/ThreadDetailx?id=31900
4. 给几个数学小故事、知识.简短
唐僧师徒摘桃子一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子.不长时间,徒弟三人摘完桃子高高兴兴回来.师父唐僧问:你们每人各摘回多少个桃子?八戒憨笑着说:师父,我来考考你.我们每人摘的一样多,我筐里的桃子不到100个,如果3个3个地数,数到最后还剩1个.你算算,我们每人摘了多少个?沙僧神秘地说:师父,我也来考考你.我筐里的桃子,如果4个4个地数,数到最后还剩1个.你算算,我们每人摘了多少个?悟空笑眯眯地说:师父,我也来考考你.我筐里的桃子,如果5个5个地数,数到最后还剩1个.你算算,我们每人摘多少个?2数字趣联宋代大诗人苏东坡年轻时与几个学友进京考试.他们到达试院时为时已晚.考官说:"我出一联,你们若对得上,我就让你们进考场."考官的上联是:一叶孤舟,坐了二三个学子,启用四桨五帆,经过六滩七湾,历尽八颠九簸,可叹十分来迟.苏东坡对出的下联是:十年寒窗,进了九八家书院,抛却七情六欲,苦读五经四书,考了三番两次,今日一定要中.考官与苏东坡都将一至十这十个数字嵌入对联中,将读书人的艰辛与刻苦情况描写得淋漓尽致.3点错的小数点学习数学不仅解题思路要正确,具体解题过程也不能出错,差之毫厘,往往失之千里.美国芝加哥一个靠养老金生活的老太太,在医院施行一次小手术后回家.两星期后,她接到医院寄来的一张帐单,款数是63440美元.她看到偌大的数字,不禁大惊失色,骇得心脏病猝发,倒地身亡.后来,有人向医院一核对,原来是电脑把小数点的位置放错了,实际上只需要付63.44美元.点错一个小数点,竟要了一条人命.正如牛顿所说:"在数学中,最微小的误差也不能忽略.。
5. 小学数学知识点总结(全部)
对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?
一、重视课内听讲,课后及时进行复习.
新知识的接受和数学能力的培养主要是在课堂上进行的,所以我们必须特别注意课堂学习的效率,寻找正确的学习方法.在课堂上,我们必须遵循教师的思想,积极制定以下步骤,思考和预测解决问题的思想与教师之间的差异.特别是,我们必须了解基本知识和基本学习技能,并及时审查它们以避免疑虑.首先,在进行各种练习之前,我们必须记住教师的知识点,正确理解各种公式的推理过程,并试着记住而不是采用"不确定的书籍阅读".勤于思考,对于一些问题试着用大脑去思考,认真分析问题,尝试自己解决问题.
二、多做习题,养成解决问题的好习惯.
如果你想学好数学,你需要提出更多问题,熟悉各种问题的解决问题的想法.首先,我们先从课本的题目为标准,反复练习基本知识,然后找一些课外活动,帮助开拓思路练习,提高自己的分析和掌握解决的规律.对于一些易于查找的问题,您可以准备一个用于收集的错题本,编写自己的想法来解决问题,在日常养成解决问题的好习惯.学会让自己高度集中精力,使大脑兴奋,快速思考,进入最佳状态并在考试中自由使用.
三、调整心态并正确对待考试.
首先,主要的重点应放在基础、基本技能、基本方法,因为大多数测试出于基本问题,较难的题目也是出自于基本.所以只有调整学习的心态,尽量让自己用一个清楚的头脑去解决问题,就没有太难的题目.考试前要多对习题进行演练,开阔思路,在保证真确的前提下提高做题的速度.对于简单的基础题目要拿出二十分的把握去做;难得题目要尽量去做对,使自己的水平能正常或者超常发挥.
由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.
6. 四年级上册数学小知识 短点的 急需啊
1. 国庆假期中,我和妈妈一起去超市购物,准备找找千克和克.走进超市,首先来到了饼干柜旁,这么多琳琅满目的饼干中,我选择了我最喜欢闲趣饼干,我仔细看了看,终于在角落里找到了"净含量100克",说明这包饼干不含袋子的重量是100克,那要是有10包这样的饼干不就是1千克了. 接着我们又来到买米的地方,我发现一袋米要10千克,如果我们家每天吃2千克的话,我家每个月就要吃60千克,也就是这样的6袋米了. 后来我又看到了16个鸡蛋大约有1千克,一个菠萝大约2千克,一个西瓜大约3千克 今天,我收获真多啊,我感受到了数学中学到的千克和克这个知识,在生活中数学真的很重要. 2. 很多人都以为 *** 数字是 *** 人发明的,可是我一直对他很怀疑,果不出我所料,今天数学课上老师介绍了 *** 数字的真正的来历.原来这是一个误会! *** 数字真正的发明者是印度人,因为当时 *** 人的航海业很发达 ,他们把数字从印度传到了 *** ,欧洲人从他们的书上了解了这种简便的记数方法,就认为是他们发明的,所以称它为 *** 数字,后来这个误会又传到了中国. 最后,我很想对印度人说:"谢谢你们给我们人类带来了这么大的方便,就因为这样,我很喜欢数学.不仅数字王国很神奇,而且数学的历史知识更是丰富. 5. 三(4) 何超 今天,我在家发现了一个数学问题. 我发现一杯可乐800克,一杯绿茶500克,一杯冰红茶不知道多少克,于是我又补充了一个信息-------冰红茶比可乐少200克,要求三杯一共多少克呢?于是,我按照老师教的方法算:800-200=600,再600+500=1100,最后1100+800=1900,所以一共1900克. 我认为在日常生活中还有许许多多的数学问题,希望小朋友们能多多观察身边的数学问题. 6. 加法和减法在我们的生活中是缺一不可的.身边有许多事情都要用到加法和减法.比如在学校里,统计分数,统计认数-------生活中,妈妈上街买菜付钱;在家里,计算一个月的开支也要用加减法.这一切的一切都与加减法有关,所以加减法在我们生活中起了十分重要的作用. 加法与减法真奇妙啊! 7. 三(4) 壮怡 现在,我们数学课正在解决两步计算的实际问题. 今天是星期天,我们全家去天目湖玩,在去天目湖的路上,我就想到了这样一个问题. 当公交车靠第一站时,我看见有8个人上了车,而第二站上了3个人,那如果第三站上车的人数是第一站和第二站人数的两倍,那第三站一共上了几个人呢? 小朋友们,你们会解决这个问题吗?用我们学到的知识试一试吧. 8.<24时记时法> 三(3) 叶飞洋 24时记时法真是无所不能,不信就看看下面我是怎样过周末的吧::首先,7:30起床,然后7:45---8:00洗脸,8:00---8:15吃早饭,8:15---9:15做作业,9:15---10:30看电视,10:30---11:00吃中饭,11:00---15:00睡午觉,15:00---16:00玩,16:00---17:30看动画片,17:30---18:00吃晚饭,18:00---20:00看电视,20:00---21:00打电脑,21:00睡觉.24时记时法是不是很伟大呢?如果你也有这样的想法,也一定要写一篇这样的日记哦! 9.积少成多 今天下午,我和妈妈来到超市买东西。
当我们买完所需的东西之后,刚要离开,我看见货架上正好摆着火腿肠,于是我让妈妈买些火腿肠,妈妈同意了。可是刚走几步,我又看见货架上摆着一包一包的,同样品牌,同样重量,里面有10根,每包4.30元。
到底买一包一包的呢,还是买一根一根的?我犹豫了。突然,我的脑子一转,有了,只要比较一下,哪一种合算就买哪一种。
于是我开始算起来:零卖的如果买10根,每根4角,就是40角,等于4元,而整包的要4.30元,多了3毛钱,所以我决定买散装的。我把我计算的过程说给妈妈听,妈妈听了直夸我爱动脑。
数学报 今天,我们又发了小学生数学报,这期报纸真的很精彩。 上面讲了怎样让书香伴你左右,茅以升如何苦练记忆力的和 *** 数字的由来等数学小常识,翻开一面,有许多数学的小窍门,如:如何找规律,怎样牢记知识,翻开另一面有一些数学小故事,从中我获得了很多课堂上学不到的内容。
所以,我觉得每一次看数学报都能让我掌握到更多的知识,我很喜欢它。 《数学的奥妙》 湖塘桥中心小学 张娜 数学在我们的生活中是无处不在的。
比如:在菜市场买菜要付多少元钱?在超市里买东西一共要付多少元?。
还有,认识了千克和克,你就可以自己算一算称的东西的价钱了。怎么样,数学是不是很重要? 所以,我要提醒你---一定要学好数学哦! 数学又是很奥妙的,它可以让我们知道一些未知数。
所以有的小朋友觉得数学有点难,有时还要请家教。 但是数学也是很灵活的。
除了我刚才提到的以外,生活中的数学还有很多种呢! 《宝贝丁丁背口诀》 湖塘桥中心小学三(2)班 李昊岚 星期天,宝贝丁丁在背口诀,当他背到“三八”时,却打住了。 这时正巧姐姐走过来,丁丁连忙问:“请问:三八?……” 姐姐气呼呼的说道:“你才‘三八’呢!还没多大就学会骂人了!” 正在厨房做饭的妈妈闻声答道:“三八妇女节呀”。
我在一旁偷偷的笑了,其实她们都误会了:丁丁既不是在骂人,也不。
1. 三年级数学报小知识(小学生三年级数学手抄报内容)
三年级数学报小知识(小学生三年级数学手抄报内容) 1.小学生三年级数学手抄报内容
数学家高斯的故事 高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。
他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。 高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。
七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。
同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。 老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。
经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。 1788年高斯不顾父亲的反对进了高等学校。
数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。 1791年高斯终于找到了资助人--布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。
隔年,高斯进入Braunschweig学院。这年,高斯十五岁。
在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。
1795年高斯进入哥廷根(G?ttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。
最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。
2.三年级数学小报资料
20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁.
伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。
阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".
塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。
高斯非常聪明,老师在课堂上出了一道算术题,要学生们计算出前100个自然数相加之和,一般的同学采取逐个相加的办法计算得头昏脑胀,而高斯几乎不加思索就算出了答案。他是注意到这个算术级数的规律,100+1=101,99+2=101……共50对数,答案是5050
就这些了
3.三年级数学手抄报,多给点内容
数学小知识
*** 数字
在生活中,我们经常会用到0、1、2、3、4、5、6、7、8、9这些数字。那么你知道这些数字是谁发明的吗?
这些数字符号原来是古代印度人发明的,后来传到 *** ,又从 *** 传到欧洲,欧洲人误以为是 *** 人发明的,就把它们叫做“ *** 数字”,因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做 *** 数字。
现在, *** 数字已成了全世界通用的数字符号。
九 九 歌
九九歌就是我们现在使用的乘法口诀。
远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。在当时的许多著作中,都有关于九九歌的记载。最初的九九歌是从“九九八十一”起到“二二如四”止,共36句。因为是从“九九八十一”开始,所以取名九九歌。大约在公元五至十世纪间,九九歌才扩充到“一一如一”。大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的一样,从“一一如一”起到“九九八十一”止。
现在我国使用的乘法口诀有两种,一种是45句的,通常称为“小九九”;还有一种是81句的,通常称为“大九九”。
数学小故事
数字趣联
宋代大诗人苏东坡年轻时与几个学友进京考试.他们到达试院时为时已晚.考官说:"我出一联,你们若对得上,我就让你们进考场."考官的上联是:一叶孤舟,坐了二三个学子,启用四桨五帆,经过六滩七湾,历尽八颠九簸,可叹十分来迟.
苏东坡对出的下联是:十年寒窗,进了九八家书院,抛却七情六欲,苦读五经四书,考了三番两次,今日一定要中.
考官与苏东坡都将一至十这十个数字嵌入对联中,将读书人的艰辛与刻苦情况描写得淋漓尽致.
点错的小数点
学习数学不仅解题思路要正确,具体解题过程也不能出错,差之毫厘,往往失之千里.
美国芝加哥一个靠养老金生活的老太太,在医院施行一次小手术后回家.两星期后,她接到医院寄来的一张帐单,款数是63440美元.她看到偌大的数字,不禁大惊失色,骇得心脏病猝发,倒地身亡.后来,有人向医院一核对,原来是电脑把小数点的位置放错了,实际上只需要付63.44美元.
点错一个小数点,竟要了一条人命.正如牛顿所说:"在数学中,最微小的误差也不能忽略.
二十一世纪从哪年开始?
世纪是计算年代的单位,一百年为一个世纪.
第一世纪的起始年和末尾年,分别是公元1年和公元100年.常见的错误是有人把起始年当作是公元零年,这显然不符合逻辑和我们的习惯,因为在一般情况下,序数的计算是从“1”开始的,而不是从“0”开始的。而正是这个理解上的错误,所以才导致了世纪末尾年为公元99年的错误认识,这也是错把1999年当作是二十世纪末尾年,错把2000年当作是二十一世纪起始年的原因.因为公元计数是序数,所以应该从“1”开始,21世纪的第一年是2001年.
4.三年级数学知识小报怎么做
趣味数学题 1、口袋里有同样大小和同样质地的红、黄、蓝三种颜色的小球各10个。
一次最少摸出个球,才能保证至少有4个颜色相同? 2、1、教室的钥匙被弄丢了,笑笑、淘气、青青三位小朋友每人说了一句话: 笑笑说:我没有说谎。 淘气说:笑笑在说谎。
青青说:淘气和笑笑都在说谎。 聪明的小朋友,你知道他们中间谁一定在说谎吗? 3、一块长20厘米、宽16厘米的长方形纸片,按图所示的方法,1层、2层、3层地摆下去,共要摆100层。
摆好后图形的周长是多少? 4、有50个同学去公园划船,每条大船可以坐6人,租金10元;每条船小船可以坐4人,租金8元。那么多种不同的租船方案中哪一种方案最省钱? 5、A、B、C、D、E五人参加乒乓球比赛,每两人都要赛一场,并且只赛一场,规定胜者得2分,负者不得分,已知比赛结果如下:(1)A与E并列第一名;(2)B是第三名;(3)C与D并列第四名,那么B得多少分? 6、15个同学排成一列横队,从左边数起,小林是第11个;从右边数起,小刚是第10个。
小林与小刚之间隔几个同学? 7、黑母鸡下1个蛋歇2天,白母鸡下1个蛋歇1天,两只鸡共下10个蛋,最少需要多少天? 8、一筐萝卜共重56千克,先卖出一半萝卜,再卖出剩下的一半,这时连筐共重17千克,问原来这筐萝卜重多少千克?筐重多少千克? 9、小强、小亮和小军练习投篮球,一共投了150次,共有64次没投进。已知小强和小亮一共投进了48次,小亮和小军一共投进了69次,小亮投进了多少次? 10、把3、6、9、12、15、18、21、24、27填在合适的方格里,使每横行、竖行、斜行的三个数相加都得45。
11、鸡和兔共有100只,兔的脚数比鸡的脚数多28只,问,鸡、兔各几只? 12、甲、乙两队共有96人,如果从甲队调8人到乙队,乙队再给丙队36人,那么甲队人数就是乙队的2倍,甲、乙两队原来各有多少人? 13、在1、2、3、……、132这些数中,数字“1”共出现了多少次? 14、小明一家三口人,妈妈比爸爸小2岁,今年全家人的年龄加起来刚好是70岁,而7年前,全家人的年龄加起来刚好是50岁。现在,小明家每个人的年龄各是多少岁? 15、学校第一次买了4个篮球和5个足球,共用去520元;第二次买了同样的5个篮球和4个足球,共用去533元。
篮球和足球的单价各是多少元?。
5.三年级数学小报资料
20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁. 伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。
家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。
老师们对他的评价是“只宜在数学的尖端领域里工作”。 阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。
父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。
在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。 祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率". 塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。
他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。
他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。
他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。 高斯非常聪明,老师在课堂上出了一道算术题,要学生们计算出前100个自然数相加之和,一般的同学采取逐个相加的办法计算得头昏脑胀,而高斯几乎不加思索就算出了答案。
他是注意到这个算术级数的规律,100+1=101,99+2=101……共50对数,答案是5050就这些了。
6.三年级数学小数知多少手抄报大全
学完《小数乘法与除法》的数学日记
[ 2007-12-16 21:10:00 | by: 冬日的阳光]
11月25日 星期日
如果把“123”中间点上一个不起眼的小数点,它便变成“1.23”或者“12.3”。如果把“456”也点上一个不起眼的小数点,它便也变成了“4.56”或者“45.6”……小数点就是这么一个神奇的符号,它能让所有数字都变成“小不点儿”!
在第七单元里,我们学习了小数的乘法与除法,让我大有感触!
第一点:列竖式时数位要对齐。列乘法竖式时,有很多同学往往误以为是用整数与整数对齐,小数与小数对齐,如果那么做的话——大错特错!正确的方法应该是这样的:不管小数点的位置在哪儿,列竖式时,一定要把两个数的末尾对齐,只有那样,所算出来的结果与答案才能是正确的!
第二点:列竖式的过程中千万不可以点上小数点。这一点可是许多同学的通病,要是在考试时,点上了小数点的话,那分扣了,自己该多后悔啊!
第三点:一定要仔细。一个小数乘10,100,1000……或者一个小数除以10,100,1000……一定不能将小数点移动的位置与方向弄错!
让我们认真地,投入地学数学吧!小数的王国里还有许多秘密在等待着我们去探索呢!
郁若彤
11月25日 星期日
谈起小数,同学们都觉得难。学了小数的加法与减法后,我们又踏入了小数乘法与除法的学习殿堂,使我们对小数有了新的认识。
学习小数,我们先来认识几条规律:
(1)一个整数乘以1以下的小数,商是越变越小,而不是越来越大;
(2)一个数乘以0.1,积就缩小10倍,乘0.01积就缩小100倍,以此类推;
(3)在小数除法运算的过程中不要急于打上小数点,等商出来后,选择适合的位置打上小数点;
(4)一个数(0除外)除以0.5,商是这个数的2倍。
掌握了上面四个规律,小数乘法和除法运算就好解决了。先要学习乘法计算,两个小数相乘,数一数两个小数一共有几位小数,最后得出的积就在几位前打上小数点。乘法简单,除法难吗?其实都是一样的,掌握了小数除法规律性运算也就不难了。
学习了上面的知识,我们来拓展一下,问题是这样的:小马虎在算一道小数乘法运算时,两数得出的积是180,其中一个因数是01,那么另一个因数是多少?
我们看前面的公式:一个数乘以0.1,积就缩小10倍,就用180÷0.1=1800来算,多简单。
学习小数乘除法真是很有趣。
7.数学手抄报内容
1、某数学家的奇闻趣事。
2、趣味数学题,计划3-5道。3、学好数学的方法。
数学趣味小故事: 高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是: 1+2+3+ 。.. +97+98+99+100 = ? 老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗? 高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说: 1+2+3+4+ 。
.. +96+97+98+99+100 100+99+98+97+96+ 。.. +4+3+2+1 =101+101+101+ 。
.. +101+101+101+101 共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于 <5050> 从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才! 一个长方形,如果长增加6厘米或者宽增加4厘米,面积都比原来增加48平方厘米,这个长方形原来的面积是多少平方厘米? 如果长增加6厘米,面积比原来增加48平方厘米,说明宽是48/6=8厘米,如果宽增加4厘米,面积增加48平方厘米,说明长是48/4=12厘米,那么原来的面积是8*12=96平方厘米。
8.小学三年级数学知识点总结
第1单元测量
1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。
2、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。
3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。
4、在计算长度时,只有相同的长度单位才能相加减。
小技巧:换算长度单位时,把大单位换成小单位就在数字的末尾添加0(关系式中有几个0,就添几个0);把小单位换成大单位就在数字的末尾去掉0(关系式中有几个0,就去掉几个0)。
5、长度单位的关系式有:( 每两个相邻的长度单位之间的进率是10)
① 进率是10:1米=10分米,1分米=10厘米,1厘米=10毫米,
10分米=1米,10厘米=1分米,10毫米=1厘米,
②进率是100:1米=100厘米,1分米=100毫米,100厘米=1米,100毫米=1分米
③进率是1000:1千米=1000米, 1公里= =1000米,1000米=1千米,1000米 = 1公里
6、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。
小技巧:在“吨”与“千克”的换算中,把吨换算成千克,是在数字的末尾加上3个0;
把千克换算成吨,是在数字的末尾去掉3个0。
7、相邻两个质量单位进率是1000。
1吨=1000千克1千克=1000克1000千克= 1吨1000克=1千
关于“趣味数学小知识内容”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!